

Combining the MODIS COSP product with CERES gridded data to evaluate the radiation budget of the GEOS model

Dongmin Lee

Lazaros Oreopoulos

Nayeong Cho

Climate and Radiation Laboratory

NASA-GSFC

Motivation and approach

- Breakdown of cloud radiative effect (CRE) errors in GCMs by cloud class provides insight on model performance
 - Is there cancelation of errors among cloud classes?
- We use cloud regimes (CRs) as cloud classes
 - Defined as having similar CF histograms in CTP-COT space
 - MODIS "COSP" product includes such CF histograms and provides observed CRs used as reference
 - The MODIS simulator (in COSP package) produces counterpart CF histograms in GCMs
- Ultimately we compare observed (CERES SYN1deg) and modeled CREs by CR

MODIS Joint CTP-COT cloud fraction histograms

MODIS cloud regimes are obtained by k-means clustering of such histograms

A closer look

Observations

Model

More frequent in model, less cloudy

GEOS CRE error decomposition

$$\Delta CRE = (\bar{f} \times \Delta r) + (\bar{r} \times \Delta f) + (\Delta r \times \Delta f)$$
Error contribution due to erroneous regime radiative properties under correct (observed) mean RFO

Error contribution due to erroneous regime RFO under correct (observed) mean CRE

"Covariance error"; contribution due to

combinations of erroneous regime RFO and CRE

 ΔCRE = overall CRE error for CR examined

= mean observed frequency (RFO)

= mean observed CRE (from CERES SYN1deg daily)

= RFO error

Dec 2002 to Nov 2019

 Δr = CRE error when regime occurs

CRE error bar graph: interpretation

Most error comes from CR radiative property biases $\bar{f} \times \Delta r$ (gray \approx red)

- All CREs are derived from (down up) fluxes
- Positive values: Model underestimates

Full CRE error decomposition

Q: Why not use (daily) FBCT*?

A: To derive the cloud regimes or to also perform the full model validation?

Q: Why not for both?

A: I can indeed derive FBCT cloud regimes, but I cannot repeat the analysis I've shown

Q: Why not?

A: I don't have CRE for overcast grid cells (no clear-sky flux) and I don't have SFC fluxes

Q: Is there anything you can do with FBCT then?

A: Well, I can combine FBCT Cloud Regimes with SYN1deg fluxes. But let me first compare COSP MODIS vs FBCT MODIS clouds

Compare MODIS COSP with MODIS FBCT (1)

- Assign ("force") FBCT CF histograms to MODIS COSP centroids
 - o Centroids will look (kinda) similar by design (backup slides), but RFOs will differ

Compare MODIS COSP with MODIS FBCT (2)

- Assign ("force") FBCT CF histograms to MODIS COSP centroids
 - Centroids will look similar by design, but RFOs will differ

Compare MODIS COSP with MODIS FBCT (3)

- Composite (average) CERES CF histograms for occurrences (location, time) of MODIS CRs
 - RFOs by definition will be the same, but mean histograms (centroids) will look different

MODIS FBCT

FBCT MODIS Cloud Regimes

Take-home messages

- A regime-based decomposition of GEOS CRE errors is more insightful
 - Can get CRE errors by cloud class
 - o For full picture need daily CREs at both TOA and SFC
- MODIS FBCT clouds appear different from those in MODIS COSP
- Can derive FBCT Cloud Regimes
 - But cannot do (full) model evaluation using solely FBCT (CRE not always available, no SFC fluxes)

CERES: 2002.7 – 2018.12 monthly data

FluxByCldTyp Cloud Amount - Total

Nayeong's results using FBCT JH: Those datasets are not very close.

Total CF 66.17 vs 56.87

Global (area weighted) mean Total CF

MODIS AQUA and TERRA C6.1, Period: 2003.1.1 - 2018.12.31 (16 years), Equal-angle L3 data (as is)

0.1 0.2 0.4 0.8 1.5 3 6 10 15 20 25 35 Cloud fraction (%) DAILY MODIS

Daily MODIS definition = Average of Terra and Aqua centroids.

if (Aqua GE 0) and (Terra EQ 'Nan') = Aqua centroids if (Aqua EQ 'Nan') and (Terra GE 0) = Terra centroids

CR CREs

CR CREs x RFOs

Compare MODIS COSP with MODIS FBCT (1)

- Assign ("force") FBCT CF histograms to MODIS COSP centroids
 - o Centroids will look (kinda) similar by design, but RFOs will differ

- Composite (average) CERES CF JHs based on MODIS CR occurrences (location, time)
 - o RFOs by definition will be the same, but mean histograms (centroids) will be different

Compare MODIS COSP with MODIS FBCT (2)

CR4	R4 CF:92.6					(CR5										CF:92		
0.1	0.3	0.1	0.1	0.2	0.1		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
5.8	15.0	13.6	4.3	1.0	0.2]	0.6	0.9	1.0	1.0	0.9	0.2	0.3	0.3	0.4	0.4	0.4	0.1	
3.9	7.5	9.2	2.4	0.3	0.0	Ī	1.4	5.2	11.3	13.1	7.2	0.8	1.3	1.9	1.8	1.8	1.3	0.2	
1.0	1.7	3.1	1.1	0.2	0.0	I	0.5	3.0	9.7	9.6	4.0	0.5	0.8	3.6	8.2	8.4	4.3	0.6	
1.3	3.6	3.5	1.0	0.2	0.0		0.3	1.6	3.8	3.5	1.7	0.2	0.4	3.1	10.0	10.0	4.9	0.6	
0.9	3.4	2.6	0.7	0.1	0.0		0.2	1.4	2.6	2.3	1.0	0.1	0.3	2.7	7.2	5.7	2.5	0.3	
0.5	1.6	1.3	0.5	0.1	0.0		0.3	1.3	1.9	1.5	0.5	0.1	0.3	1.8	2.8	2.1	1.0	0.2	

CR7 CF:91.9						CR8	CR8										CF:84.7	
0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.1	0.0	0.0	0.0	0.0	0.0
0.3	0.1	0.1	0.1	0.1	0.0	0.1	0.1	0.0	0.1	0.1	0.0	1	0.4	0.2	0.1	0.1	0.1	0.0
0.7	0.4	0.4	0.3	0.2	0.0	0.3	0.3	0.6	0.7	0.3	0.0		0.6	0.4	0.5	0.3	0.2	0.0
0.4	0.7	0.9	0.8	0.3	0.0	0.2	0.3	0.7	0.9	0.4	0.1		0.3	0.4	0.6	0.4	0.2	0.0
0.2	0.9	3.2	5.3	2.5	0.2	0.1	0.3	0.8	1.7	0.8	0.1		0.2	0.4	1.0	0.8	0.2	0.0
0.2	3.8	19.3	20.0	6.4	0.3	0.1	0.5	3.3	7.8	2.7	0.1	Ī	0.3	2.3	7.3	3.2	0.4	0.0
0.4	4.3	10.3	6.9	1.9	0.1	0.3	3.1	22.1	40.0	7.0	0.1		1.2	16.7	37.4	8.1	0.4	0.0

FBCT CFs are larger!

GEOS forced (July 2002 ~ June 2016) to FBCT CRs

CR CRE comparison between FBCT and GEOS

CR CREs x RFOs comparison between FBCT and GEOS

CRE Error decomposition, GEOS with FBCT

